
SELECT
According to the standard SQL functionality, Natural supports both the cursor-oriented selection that is used to
retrieve an arbitrary number of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

With the "SELECT ... END-SELECT" construction, Natural uses the same database loop processing as with the
FIND statement.

Cursor-Oriented Selection

Like the FIND statement, a cursor-oriented selection is used to select a set of rows (records) from one or more
database tables, based on a search criterion. In addition, no cursor management is required from the application
program; it is automatically handled by Natural.

Non-Cursor Selection

1Copyright Software AG 2001

SELECTSELECT

The SELECT SINGLE statement supports the functionality of a non-cursor selection (singleton SELECT); that is, a
select expression that retrieves at most one row without using a cursor. It cannot be referenced by a positioned
UPDATE or DELETE statement.

table-expression
The table-expression consists of a FROM clause and an optional WHERE clause. The GROUP BY and HAVING
clauses are not permitted.

Example 1:

 DEFINE DATA LOCAL
 01 #NAME (A20)
 01 #FIRSTNAME (A15)
 01 #AGE (I2)
 ...
 END-DEFINE
 ...
 SELECT NAME, FIRSTNAME, AGE
 INTO #NAME, #FIRSTNAME, #AGE
 FROM SQL-PERSONNEL
 WHERE NAME IS NOT NULL
 AND AGE > 20
 ...
 DISPLAY #NAME #FIRSTNAME #AGE
 END-SELECT
 ...
 END

Example 2:

Copyright Software AG 20012

SELECTtable-expression

 DEFINE DATA LOCAL
 01 #COUNT (I4)
 ...
 END-DEFINE
 ...
 SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL
 ...

See further information on selection and table-expression.

Note:
In the following, the term "SELECT statement" is used as a synonym for the whole query-expression consisting of
multiple select expressions concatenated with UNION operations.

3Copyright Software AG 2001

table-expressionSELECT

INTO Clause

The INTO clause is used to specify the target fields in the program which are to be filled with the result of the
selection. The INTO clause can specify either single parameters or one or more views as defined in the DEFINE
DATA statement.

All target field values can come either from a single table or from more than one table as a result of a join operation
(see also the section Join Queries).

Note:
In standard SQL syntax, an INTO clause is only used in non-cursor select operations (singleton SELECT) and can be
specified only if a single row is to be selected. In Natural, however, the INTO clause is used for both cursor-oriented
and non-cursor select operations.

The selection can also merely consist of an asterisk (*). In a standard select expression, this is a shorthand for a list
of all column names in the table(s) specified in the FROM clause. In the Natural SELECT statement, however, the
same syntactical item "SELECT *" has a different semantic meaning: all the items listed in the INTO clause are also
used in the selection. Their names must correspond to names of existing database columns.

Examples:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 ...
 SELECT *
 INTO NAME, AGE

 ...
 SELECT *
 INTO VIEW PERS

These examples are equivalent to the following ones:

 ...
 SELECT NAME, AGE
 INTO NAME, AGE

 ...
 SELECT NAME, AGE
 INTO VIEW PERS

Copyright Software AG 20014

SELECTINTO Clause

parameter

If single parameters are specified as target fields, their number and formats must correspond to the number and
formats of the columns and/or scalar-expressions specified in the corresponding selection as described above (see
details on Scalar Expressions).

Example:

 DEFINE DATA LOCAL
 01 #NAME (A20)
 01 #AGE (I2)
 END-DEFINE
 ...
 SELECT NAME, AGE
 INTO #NAME, #AGE
 FROM SQL-PERSONNEL
 ...

The target fields #NAME and #AGE, which are Natural program variables, receive the contents of the table columns
NAME and AGE.

VIEW Clause

If one or more views are referenced in the INTO clause, the number of items specified in the selection must
correspond to the number of fields defined in the view(s) (not counting group fields, redefining fields and indicator
fields).

Note:
Both the Natural target fields and the table columns must be defined in a Natural DDM. Their names, however, can
be different, since assignment is made according to their sequence.

Example of INTO Clause with View:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 END-DEFINE
 ...
 SELECT FIRSTNAME, AGE
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 ...

The target fields NAME and AGE, which are part of a Natural view, receive the contents of the table columns
FIRSTNAME and AGE.

5Copyright Software AG 2001

parameterSELECT

correlation-name

If the VIEW clause is used within a "SELECT *" construction where multiple tables are to be joined,
correlation-names are required if the specified view contains fields that reference columns which exist in more than
one of these tables. In order to know which column to select, all these columns are qualified by the specified
correlation-name at generation of the selection list. The correlation-name assigned to a view must correspond to one
of the correlation-names used to qualify the tables to be joined. See also the section Join Queries.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 FIRST-NAME
 02 AGE
 END-DEFINE
 ...
 SELECT *
 INTO VIEW PERS A
 FROM SQL-PERSONNEL A, SQL-PERSONNEL B
 ...

Query involving UNION
UNION unites the results of two or more select-expressions. The columns specified in the individual
select-expressions must be UNION-compatible; that is, matching in number, type and format.

Redundant duplicate rows are always eliminated from the result of a UNION unless the UNION operator explicitly
includes the ALL qualifier. With UNION, however, there is no explicit DISTINCT option as an alternative to ALL.

Example:

 DEFINE DATA LOCAL
 01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 02 ADDRESS (1:6)
 END-DEFINE
 ...
 SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE > 55
 UNION ALL
 SELECT NAME, AGE, ADDRESS
 FROM SQL-EMPLOYEES
 WHERE PERSNR < 100
 ORDER BY NAME
 ...
 END-SELECT
 ...

In general, any number of select expressions can be concatenated with UNION.

The INTO clause must be specified with the first select-expression only.

Copyright Software AG 20016

SELECTQuery involving UNION

Any ORDER BY clause must appear after the final select-expression; the ordering columns must be identified by
number, not by name.

7Copyright Software AG 2001

Query involving UNIONSELECT

ORDER BY Clause

The ORDER BY clause arranges the result of a SELECT statement in a particular sequence.

Each ORDER BY clause must specify a column of the result table. In most ORDER BY clauses a column can be
identified either by column-reference (that is, by an optionally qualified column name) or by column number. In a
query involving UNION, a column must be identified by column number. The column number is the ordinal
left-to-right position of a column within the selection, which means it is an integer value. This feature makes it
possible to order a result on the basis of a computed column which does not have a name.

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #YEARS-TO-WORK (I2)
 END-DEFINE
 ...
 SELECT NAME , 65 - AGE
 INTO #NAME, #YEARS-TO-WORK
 FROM SQL-PERSONNEL
 ORDER BY 2
 ...

The order specified in the ORDER BY clause can be either ascending (ASC) or descending (DESC). ASC is the
default.

Copyright Software AG 20018

SELECTORDER BY Clause

Example:

 DEFINE DATA LOCAL
 1 PERS VIEW OF SQL-PERSONNEL
 1 NAME
 1 AGE
 1 ADDRESS (1:6)
 END-DEFINE
 ...
 SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE = 55
 ORDER BY NAME DESC
 ...

See further information on integer values and column-reference in the SQL Statements overview page.

9Copyright Software AG 2001

ORDER BY ClauseSELECT

IF NO RECORDS FOUND-clause
Note:
This clause actually does not belong to Natural SQL; it represents Natural functionality which has been made
available to SQL loop processing.

Structured Mode Syntax

Reporting Mode Syntax

 The IF NO RECORDS FOUND clause is used to initiate a processing loop if no records meet the selection criteria
specified in the preceding SELECT statement.

If no records meet the specified selection criteria, the IF NO RECORDS FOUND clause causes the processing loop
to be executed once with an "empty" record. If this is not desired, specify the statement ESCAPE BOTTOM within
the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements are executed
immediately before the processing loop is entered. If no statements are to be executed before entering the loop, the
keyword ENTER must be used.

Note:
If the result set of the SELECT statement consists of a single row of NULL values, the IF NO RECORDS FOUND
clause is not executed. This could occur if the "selection" list consists solely of one of the "aggregate-functions"
SUM, AVG, MIN or MAX on columns, and the set on which these "aggregate-functions" operate is empty.
When you use these "aggregate-functions" in the above-mentioned way, you should therefore check the values of the
corresponding null-indicator fields instead of using an IF NO RECORDS FOUND clause.

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS FOUND clause,
Natural resets to empty all database fields which reference the file specified in the current loop.

Copyright Software AG 200110

SELECTIF NO RECORDS FOUND-clause

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing as a result of the IF
NO RECORDS FOUND clause.

11Copyright Software AG 2001

Evaluation of System FunctionsSELECT

Join Queries
A join is a query in which data is retrieved from more than one table. All the tables involved must be specified in the
FROM clause.

Example:

 DEFINE DATA LOCAL
 1 #NAME (A20)
 1 #MONEY (I4)
 END-DEFINE
 ...
 SELECT NAME, ACCOUNT
 INTO #NAME, #MONEY
 FROM SQL-PERSONNEL P, SQL-FINANCE F
 WHERE P.PERSNR = F.PERSNR
 AND F.ACCOUNT > 10000
 ...

A join always forms the Cartesian product of the tables listed in the FROM clause and later eliminates from this
Cartesian product table all the rows that do not satisfy the join condition specified in the WHERE clause.

Correlation-names can be used to save writing if table names are rather long. Correlation-names must be used when
a column specified in the selection list exists in more than one of the tables to be joined in order to know which of
the identically named columns to select.

Copyright Software AG 200112

SELECTJoin Queries

	SELECT
	Cursor-Oriented Selection
	Non-Cursor Selection
	table-expression
	INTO Clause
	parameter
	VIEW Clause
	correlation-name

	Query involving UNION
	ORDER BY Clause
	IF NO RECORDS FOUND-clause
	Structured Mode Syntax
	Reporting Mode Syntax
	Database Values
	Evaluation of System Functions

	Join Queries

